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Abstract

This paper develops a theoretical model of the bitcoin market and demonstrates

that the bitcoinís volatile and explosive price path is a consequence of the Bitcoin

protocolís system of supply management. The model implies that the marginal cost

of mining the target supply of bitcoins is the fundamental value of the bitcoin since

it corresponds to an equilibrium in the Bitcoin protocol and the rent-seeking tour-

nament among miners. The data provide strong empirical evidence of cointegration

between the bitcoinís price and the marginal cost of mining the target supply of bit-

coins, demonstrating the existence of their long-run equilibrium relationship. Current

bubble detection techniques indicate that there is no evidence of explosive departures

in the price of the bitcoin from its model-implied fundamental value. Since the raw

price data exhibit explosive behavior, the apparent bubbles in the price of the bitcoin

can be attributed to its nonstationary market fundamentals.
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1 Introduction

In this paper bitcoins are viewed as tradable commodities whose supply is managed by the

Bitcoin protocol.1 It makes no sense to value bitcoins as if they were a stock because the

Bitcoin network, as an institution, is not owned by anyone. And while it is a digital cur-

rency, it cannot assume a value as do Öat currencies because no government decrees and

maintains its value. Bitcoin is most analogous to a commodity such as co§ee, which is pro-

duced by ësmallí farmers who are uncoordinated in their production decisions. While miners

use electricity to produce bitcoins (instead of sunshine), the analogy is not far-fetched, as

evidenced by the fact that miners demonstrate a strong preference for joining mining pools,2

which are similar in structure to co§ee cooperatives since they are designed to share the risk

among their members.3 Co§ee farmers once beneÖted from the now defunct International

Co§ee Agreement (ICA), which was a system of quotas that resulted in high and stable

prices by organizing the supply of farmers worldwide (Talbot, 2004). Encoded in the Bitcoin

protocol is a similar system of supply management that the Bitcoin network sustains by its

near-perfect monitoring of the rate of block formation (and thus the quantity of bitcoins

supplied) and enforces by regular adjustments in the level of di¢culty of mining a block.

Bitcoin, however, has the additional feature of being a medium of exchange and a tradable

asset with numerous well-developed market exchanges, resulting in a unique class of asset

with characteristics that have never before been seen.

To ascertain the value of the bitcoin, this paper develops a theoretical model of the bit-

coin market that incorporates the functioning of the Bitcoin protocol and the production of

1I follow the convention of capitalizing the word ëbitcoiní when referring to the protocol or network and
writing it in lowercase when referring to the unit of currency.

2According to hashrate distribution statistics provided by BTC.com, over 95% of the Bitcoin network
hashrate can currently be attributed to mining pools. See https://btc.com/stats/pool

3Mining pools enable miners to decrease the variance of their returns by sharing their processing power
over a network and splitting the reward according to the amount of work that each has contributed to the
probability of Önding a block.
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bitcoins by miners. The fundamental value of the bitcoin is deÖned as the price that imple-

ments an equilibrium in the protocol and the rent-seeking tournament among miners. Since

the bitcoin is not an income generating asset, it should be valued according to equilibrium

market conditions. It is shown that the model-implied fundamental value of the bitcoin is

the marginal cost of mining the target supply of bitcoins. Following a permanent demand

shock, successive adjustments in the di¢culty will cause the market price to approach the

fundamental value consistent with the limiting equilibrium. Nearly 5 years of data are used

to test whether there is empirical evidence of a long run equilibrium relationship between

the price of the bitcoin and the marginal cost of mining the target supply of bitcoins, which

would support it as the fundamental value of the bitcoin. Current bubble detection tech-

niques are then applied to test whether there are explosive departures in the price of the

bitcoin from its model-implied fundamental value, which would conÖrm true bubbles in the

price of the bitcoin, or if the apparent bubbles in the price of the bitcoin arise from the mar-

ket fundamentals themselves. This paper demonstrates that the Bitcoin protocolís di¢culty

adjustment mechanism gives rise to explosive market fundamentals and hence we should not

presume that explosive periods in bitcoin price data are cryptocurrency bubbles.

Asset price bubbles are typically associated with dramatic price increases followed by a

collapse. It is important to identify bubbles because asset prices a§ect the real allocation of

an economy and bubbles can raise concerns that spur government intervention (Gronwald,

2021). A common deÖnition is that bubble conditions arise when the price of an asset

signiÖcantly exceeds its intrinsic or fundamental value. It is challenging to identify bubbles

in market data, however, because one needs to know an assetís fundamental value in order to

identify a divergence between it and the assetís price. Moreover, econometric tests of asset

price bubbles do not do a good job of di§erentiating between misspeciÖed fundamentals

and bubbles (Gurkaynak, 2005). Models in which investors have rational expectations and

identical information yield the testable implication that bubbles have to follow an explosive
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price path (Brunnermeier, 2008). It is this deviation from martingale behavior that permits

the identiÖcation of the boom phase of a bubble and the subsequent crash, since the e¢cient

market martingale property implies unit root time series dynamic behavior (Phillips and Yu,

2011).

Bitcoin was invented by an unknown individual and launched on January 3, 2009. Cryp-

tocurrencies such as Bitcoin are electronic payment systems that permit transactions to be

made with pseudo-anonymity4 and without middlemen like banks. Bitcoinís price path is

notoriously volatile and has evinced a multitude of boom-and-bust cycles over its nearly

15-year lifespan. Until July 2010, the price of a bitcoin was less than 0.01 USD. By the

beginning of 2017, the price had risen astoundingly to a stable 1,000 USD and by the end of

2017, it had skyrocketed to 19,783 USD. The price has demonstrated numerous peaks and

troughs since that time. For instance, it reached just under $29,000 by the end of 2020, a

416% increase from the start of the year, and an all-time high of over $68,000 in November

2021. After June 2022, the price plummeted below $23,000 for the Örst time since December

2020 and it has rebounded somewhat since that time. While there are numerous histor-

ical examples of bubbles, starting as far back as the Dutch tulipmania (1634ñ7),5 one is

hard-pressed to identify an asset price or an episode of market exuberance that exempliÖes

the ceaseless deáations and re-ináations that are apparent in the price path of Bitcoin and

similar cryptocurrencies.6

Mining is the process by which bitcoins are created. Bitcoin miners use electricity to solve

complex mathematical puzzles in order to verify the transactions added to the blockchain.

4Bitcoin addresses are not tied to the identity of their users but since all transactions over the Bitcoin
network are completely transparent and traceable, multiple Bitcoin addresses can be clustered together and
then associated with a particular user. See Meiklejohn et al. (2013).

5See Garber (1989; 1990) and Brunnermeier (2008) and for a discussion of the history of price bubbles.
Also see Kyriazis et al. (2020) for a survey of the academic literature concerning the formation of pricing
bubbles in digital currency markets.

6It is theoretically possible, however, for rational bubbles to periodically collapse to a small nonzero value
and then to continue to increase. See Evans (1991).
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Solving this ëproof of workí (PoW) problem requires tremendous computational power and

the Örst miner to succeed (Önd a correct hash) is rewarded with new bitcoins.7 The Bitcoin

protocol speciÖes a target that a correct hash must fall below, which implies a level of

di¢culty for the computational problem. Changes in the target and hence the level of

di¢culty a§ect the rate of block formation. An increase (decrease) in di¢culty decreases

(increases) the probability that a miner will Önd a correct hash and miners must use more

(less) hashpower and thus electricity for the same expected reward. Since the production of

a block increases the supply of bitcoins according to the block reward, changes in the level

of di¢culty also determine the growth rate of the supply of bitcoins over time.

Although the Bitcoin network is managed by peer-to-peer technology without a central

authority, it uses the level of di¢culty as an instrument to enforce an ináexible system of

supply management. The protocol regulates the quantity of bitcoins that are mined by

adjusting the level of di¢culty every 2016 blocks (approximately every two weeks). There

is an interval of time between adjustments in the level of di¢culty so that the network can

accurately estimate the waiting time to Önd a block. If the network detects that the time

required to Önd the last 2016 blocks di§ers from 20,160 minutes, then the network uses the

estimated mining rate to adjust the level of di¢culty proportionally in order to target a

ten-minute interval between successive blocks mined.8 This results in a target supply of

bitcoins per day equal to the block reward multiplied by 144 blocks.

In Section 2 of the paper, the bitcoin mining industry is modeled with the free entry

of miners in response to proÖts that are created in accordance with the Bitcoin protocol.

Since there are no barriers to entry and there is very little heterogeneity among miners,

they operate in a market that can be closely approximated by perfect competition (Prat and

Walter, 2021; Podhorsky, 2023). For simplicity, there is no secondary market for the bitcoin

7The current block reward is 6.25 bitcoins.
8See Antonopoulos (2017).
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and all input markets are held constant. Proposition 1 of the paper demonstrates that the

marginal cost of mining the target supply of bitcoins naturally deÖnes the fundamental value

of the bitcoin since it corresponds to a steady state in the system. When the price of the

bitcoin is equal to it, the Bitcoin protocol is in equilibrium since it has no incentive to change

the level of di¢culty, and there is equilibrium in the rent-seeking tournament among bitcoin

miners since their expenditures are equal to their expected rewards.

The model demonstrates how adjustments in the di¢culty in response to demand shocks

result in exaggerated price movements that are consistent with the volatility and explosive

behavior evident in the bitcoinís price path. Since adjustments in the di¢culty enforce a

vertical supply curve at the target supply of bitcoins, variations in demand are expressed in

the price of the bitcoin, resulting in supernormal price volatility. Also, whenever a positive

demand shock results in excess demand for the bitcoin, the protocol will increase the di¢culty

since the mining rate will exceed the target. Because this decreases the supply of bitcoins

in the presence of excess demand, the di¢culty adjustment will cause the price to jump,

where the magnitude depends on the extent of excess demand. While the sudden increase

in the price resembles a bubble, it is not a bubble in the theoretical sense since the greater

di¢culty is incorporated into a higher marginal cost of mining.

Bitcoin is an advantageous choice of asset for studying price behavior since the protocolís

rules are clearly stated and the entire population of data pertaining to the functioning of the

protocol is available from its blockchain ledger. The Bitcoin blockchain is parsed to obtain

daily time series data for the level of di¢culty, the number of blocks mined per day and the

minersí block rewards and fees. Daily data for the USD price of the bitcoin are obtained

from coindesk.com, the USD price of Antminer mining rigs (models S1, S2, S3, S4, S5, S7, S9

and S11) sold on Amazon Marketplace by third party sellers are obtained from Keepa.com

and the respective equipment speciÖcations (hash rate and energy e¢ciency) are obtained

directly from Amazon.com. Since 17 March 2014 was the Örst day that price information on
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the Antminer S1 rig was tracked by Keepa.com, the data cover the period from 17 March

2014 to 13 January 2019.

Based on the theoretical Öndings of Section 2, it is hypothesized that the marginal cost

of mining the target supply of bitcoins is the fundamental value of the bitcoin and that there

are no explosive departures in the price of the bitcoin from it. Section 4 outlines how the

price of the bitcoin and the marginal cost of mining the target supply of bitcoins are tested

for their cointegration by using the Engle-Granger test (Engle and Granger, 1987). It also

outlines how the supremum augmented Dickey-Fuller (SADF) test (Phillips et al., 2011) and

the generalized supremum augmented Dickey-Fuller (GSADF) test (Phillips et al., 2015a;

2015b) are applied to test whether the boom-and-bust cycles evident in bitcoin price data

are explosive departures from the model-implied fundamental value of the bitcoin. Since

asset prices are typically well approximated by a random walk in the absence of bubbles but

are characterized by an explosive path during periods of bubbles, these techniques identify

bubbles by testing for a mildly explosive departure from a random walk (Phillips et al., 2011;

Phillips and Yu, 2011; Homm and Breitung, 2012; Phillips et al., 2015a; 2015b).

Section 5 presents the results. It is shown that the price of the bitcoin is cointegrated

with the marginal cost of mining the target supply of bitcoins, supporting the marginal cost

of mining the target supply of bitcoins as the fundamental value of the bitcoin since the

variables share a common long run stochastic trend. It is also shown that, while the raw

bitcoin price data demonstrate evidence of explosiveness, the residuals from the regression of

the price of the bitcoin on the marginal cost of mining the target supply of bitcoins do not.

Since there are no explosive departures in the price of the bitcoin from its model-implied

fundamental value, the apparent bubbles in the price of the bitcoin can be attributed to the

nonstationarity of its market fundamentals.

There is a rapidly growing economics literature on the topic of Bitcoin and cryptocur-

rencies. Several papers investigate the question of whether the bitcoin acts as an alterna-

7



tive currency or has properties that resemble those of commodities (or speculative assets).

Dyhrberg (2016) uses GARCH models to examine whether bitcoin behaves like a well-known

Önancial asset or as something in between a commodity and a currency by analyzing several

aspects of its price volatility. The author demonstrates that most aspects of the bitcoin are

similar to a commodity like gold as it reacts to similar variables, possesses similar hedging

capabilities, and reacts symmetrically to good and bad news. Baur et al. (2018) Önd that

bitcoin is a hybrid of commodity money and Öat money but that bitcoins are mainly used

as a speculative investment and not as an alternative currency and medium of exchange.

Symitsi and Chalvatzis (2019) Önd statistically signiÖcant diversiÖcation beneÖts from the

inclusion of bitcoin in the portfolios of various asset classes, which are more pronounced for

commodities. These papers, on balance, support modeling the bitcoin as a commodity.

Another strand of literature further demonstrates that bitcoin is an asset that is radi-

cally di§erent from those belonging to traditional asset classes. Using a LASSO approach,

Panagiotidis et al. (2018) investigate the ináuence of various factors such as stock market

returns, exchange rates, gold and oil returns, the Federal Reserve and European Central

Bankís rates, and internet trends on bitcoin returns. The authors show that Google search

intensity and gold returns are the most important drivers of bitcoin returns. Bianchi (2020)

uses a large panel of prices, traded volumes, and market capitalization on 14 actively quoted

cryptocurrencies to demonstrate that, except for a mild correlation with gold and crude oil,

there is no signiÖcant relation between returns on cryptocurrencies and more traditional

asset classes. The comprehensive empirical analysis conducted in Liu and Tsyvinski (2021)

demonstrates that the mean and standard deviation of returns for cryptocurrencies are an

order of magnitude higher than those for traditional asset classes and that cryptocurrencies

have no exposure to most common stock market and macroeconomic factors. Dong et al.

(2022) Önd that bitcoin price dynamics are signiÖcantly sensitive to investor sentiment and

that market sentiment positively comoves with bitcoin prices. Chowdhury and Damianov
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(2023) demonstrate that crypto price and policy uncertainty indices based on news coverage

(Lucey et al., 2022) are associated with the emergence of bubbles in cryptocurrencies. These

empirical studies characterize features of bitcoin returns that are consistent with the main

premise of this paper: since the protocol uses the di¢culty to target a constant supply of

bitcoins per day, prices are demand driven and highly sensitive to investor attention and

sentiment.

While the bitcoin was introduced in 2009, today there is still very little consensus about

how to model the fundamental value of a cryptocurrency. For instance, 56% of a recent

panel of experts stated that they were either uncertain (42%) or had no opinion (14%)

about whether the fundamental value of the bitcoin is at least $1000.9 Using bitcoin price

data, Cheah and Fry (2015) Önd that bitcoin prices contain a substantial speculative bubble

component and that the fundamental value of the bitcoin is zero. The authors apply the

model of Johansen et al. (2000) that is based on the pricing of a speculative asset that pays

no dividends but neither take into consideration the functioning of the Bitcoin protocol nor

the production of bitcoins by miners. Prasad (2021) maintains that bitcoin has no intrinsic

value since its value comes from scarcity but scarcity itself can hardly be a source of value.

In contrast, Bouoiyour et al. (2016) apply the technique of Empirical Mode Decomposition

to bitcoin price data and Önd that long-term fundamentals greater than one year are likely to

be the major contributors of Bitcoin price variation. While the method can detect possible

hidden features in the price data, it canít specify which variables comprise the fundamentals.

Bolt and Van Oordt (2019) develop a framework that abstracts from cryptocurrency pro-

duction (mining) and combines an investorís portfolio model with a payment network model

to study the exchange rate of a virtual currency. The authors show that the exchange rate

of virtual currency is determined by the current value of transactions in virtual currency,

the decisions and expectations of forward-looking investors to buy virtual currency and the

9See: https://www.chicagobooth.edu/review/whats-fundamental-value-bitcoin
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elements that jointly drive future consumer adoption and merchant acceptance of virtual

currency. Biais et al. (2023) develop a model in which agents can trade standard Öat money

and a cryptocurrency. The authors show that the price of the cryptocurrency is equal to the

present value of the expectation of a pricing kernel that captures the correlation between the

marginal utility of consumption and the cryptocurrency price, the risk of hacks, and the sum

of the price of the cryptocurrency in the next period and its net transactional beneÖt. The

authors Önd that the valuation of cryptocurrencies di§ers from the valuation of stocks since

the fundamental value stems from the transactional beneÖts instead of the Örmís dividend.

It is for this reason that Gronwald (2021) cautions against testing for cryptocurrency bubbles

using procedures based on a theoretical stock price model. For stocks, in the absence of a

bubble, the degree of nonstationarity of the asset price is controlled entirely by the dividend

series that is believed from empirical evidence to be at most an integrated order 1 process

(Phillips and Shi, 2018). Presuming that evidence of price explosiveness implies evidence of

a bubble amounts to placing the same restriction on an assetís fundamental value.

Most closely related to this paper are Easley et al. (2019), which develops a game

theoretic model to explain the strategic behavior of miners and users, demonstrating that

equilibrium in the bitcoin blockchain is a complex balancing of user and miner participation.

Hayes (2019) was Örst to propose the marginal cost of production as a model to value

the bitcoin. The author formalizes a pricing model based on the marginal cost of mining

new bitcoins, which arises from minersí computational e§ort that consumes electricity. The

author uses the Granger causality test to demonstrate unidirectional causality from the

pricing model to the market price. Lambrecht et al. (2021) undertake an experiment to

investigate how features associated with the PoW consensus mechanism a§ect pricing. In

the experiment, mining is modeled by an asset cost that is increasing in the cumulative

units of the assets that have been generated by the participants. While the authors do not

use advanced bubble detection techniques likely due to insu¢cient data, they Önd patterns
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of bubbles and crashes in the price that they causally attribute to mining. Podhorsky

(2023) applies the same framework and data as the present paper but the focus is on how

the di¢culty adjustment mechanism can be incentivized by a tax to decrease the Bitcoin

networkís electricity costs.

In contrast with other papers in the literature, the present paper develops a model that

includes costly mining activity and the functioning of the Bitcoin protocol. While Easley et

al. (2019) study how the Bitcoin protocol a§ects the interaction between miners and users,

and thus the determination of fees, the present paper treats fees as exogenous and studies

how the protocol a§ects the interaction between the miners and the buyers of bitcoins, and

thus the determination of the price of the bitcoin in the market. It gives special attention

to the workings of the di¢culty adjustment mechanism and does not assume that the target

quantity of bitcoin production always holds. To focus on the supply-side e§ects of the

protocol, the model includes a relatively unstructured demand side of the bitcoin market.

It treats network quality and security, in addition to buyerís expectations, and speciÖc use

cases for the bitcoin that are mostly unobservable due to the pseudo-anonymity of bitcoin

transactions as exogenous factors that may drive the demand for bitcoins. It is shown that

because the protocol adjusts the level of di¢culty in response to changes in the equilibrium

mining rate detected by the network, which depends on both the supply and demand for

bitcoins, the di¢culty is a su¢cient statistic for the demand parameters. Hence the marginal

cost of mining the target supply of bitcoins, which depends largely on the network di¢culty,

thoroughly characterizes the fundamental value of the bitcoin. The framework clearly shows

how the protocolís interference in the market results in volatility and apparent bubbles in

the price of the bitcoin. The present paper further demonstrates that market data uphold

the marginal cost of mining the target supply of bitcoins as the fundamental value of the

bitcoin and that the apparent bubbles in the price of the bitcoin arise from a supply side

phenomenon that can be attributed to Bitcoinís system of supply management.

11



2 The model

2.1 Supply

A miner collects new transactions into a block and then hashes the block header to form a

256-bit block hash value. If the value is below a target set by the protocol, which corresponds

to a given level of di¢culty , then other miners will conÖrm the solution and agree that the

block can be added to the blockchain. Because the minimum level of di¢culty (equal to 1)

requires the hash of the block header to start with 8 hexadecimal zeros, which represents 32

bits, the expected number of hashes per second needed to Önd a solution is 232; where the

di¢culty  is a unitless scaling parameter that is a multiple of the minimum amount of work

that any valid block can contain. It follows that the expected waiting time for a miner to

Önd a block (in seconds) is 232

109
, where  is the hashrate employed by the miner measured

in gigahashes per second.10 When a miner Önds a block, the miner earns the block reward

! (denominated in bitcoins) and may also earn fees f per block (denominated in bitcoins)

that senders of bitcoins can include in any transaction to reduce their waiting time.

The protocol regulates the quantity of bitcoins that are mined by adjusting the di¢culty

every 2016 blocks. It adjusts the di¢culty in such a way that the current network hashrate

results in a ten-minute block interval. If the network detects that the time required to Önd

the last 2016 blocks di§ers from 20,160 minutes, which is a daily mining rate (blocks per

day) that di§ers from 144, then the level of di¢culty will be adjusted as follows:

2
1
=

20; 160 minutes
Actual time of last 2016 blocks in minutes

=
daily mining rate

144
(1)

where 2 is the new level of di¢culty and 1 is the previous level of di¢culty.

There are identical potential entrants (miners) to the bitcoin mining industry. Each

10There are 109 hashes in a gigahash.
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miner is risk neutral,11 knows the rules of the Bitcoin protocol that govern the network, and

must pay a Öxed cost F (thereafter sunk) to purchase mining equipment in order to enter.

Upon entry, a minerís daily expected bitcoin production is

x (i) =
!i60

2

232

109

(2)

where i602 is the number of seconds spent mining per day. Hence if 109i602 hashes are

created by a miner in one day, the expected number of blocks mined is 109i60
2

232
per day, at

a reward of ! bitcoins per block. A minerís daily electricity cost is

i
1000

pe (3)

where  is the energy e¢ciency of the minerís hardware measured in joules per gigahash

(and hence  is the power usage measured in joules per second, or watts) and pe is the

dollar price of electricity per kilowatt hour (kWh). It follows from (2) and (3) that a minerís

operating proÖt is linear in i and if the dollar price of a bitcoin (the exchange rate) pb >

232pe
(!+f)(1000)602109

 pb; then it is optimal the miner to set i = 24 and 0 otherwise.12

Since hashing power scales linearly (doubling the number of miners doubles the network

hashrate), the total hashpower of the Bitcoin network is M; where M is the total number

of miners who enter the industry. It follows that gross of investment costs, minersí aggregate

expected daily proÖts are given by

 =


pb (! + f) 602109

232


pe
1000


24M (4)

where it is assumed that pb > pb: Because an increase in the number of miners M increases

11Easley et al. (2019) also assumes that miners are risk neutral.
12These corner solutions realistically capture the fact that when the price of the bitcoin falls to the point

where it is su¢ciently low (ie. pb < pb), the miners simply turn o§ their machines until the price recovers.
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the network hashrate proportionally, each miner has the same expected proÖt 
M
regardless

of the number of entrants. Every 2016 blocks, the level of di¢culty  is adjusted so that

the average waiting time to Önd a block on the network is approximately 10 minutes (600

seconds), so that 232

M109
= 600 or

 =
600M109

232
: (5)

Since the target waiting time to Önd a block on the network in (5) is encoded in the protocol

and known to the potential entrants, it pins down the number of miners M: From (4) and

(5) it follows that the expected daily proÖt for a miner is

 =


M
 F

=


pb (! + f) 602

600M


pe
1000


24 F

where  is the daily depreciation rate of the minerís equipment. Since there is free entry

to the bitcoin mining industry, miners have zero expected proÖts and hence the number of

miners per day is given by  = 0 or

M =
pb (! + f)

h
(24)602

600

i

F + 
1000

(24) pe
: (6)

From (6) it is clear that the number of miners is equal to the total dollar value of the block

reward and fees, for each of the 144 possible blocks mined, divided by each minerís daily

equipment and electricity costs

F +


1000
(24) pe: (7)

While the number of entrantsM adjusts immediately to changes in the price of a bitcoin

pb; the level of di¢culty adjusts only approximately every two weeks while the network learns

the network hashrate M from observing the average number of blocks mined per day.
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The aggregate supply of bitcoins per day XS is equal to the block reward ! multiplied

by the daily mining rate, which is determined by the network hashrate M for a given : If

pb > pb; it follows that

XS =
! (24) 602

232

M109

(8)

=
pb (! + f)

h
(24)602109

232

i

F + 
1000

(24) pe
X

where the second line follows from M of (6) and

X =
! (24) 602

600

= 144!

is the target supply of bitcoins per day since the protocol adjusts  so that one block is

created approximately every 10 minutes (600 seconds). From (8) it follows that the supply

curve is linear because hashing power scales linearly.

Since the networkís choice of the level of di¢culty depends on the network hashrate M;

the equilibrium level of di¢culty  will depend on M. Hence it follows from substituting

(6) into (5) that the equilibrium level of di¢culty is

 =
pb (! + f)

h
(24)602109

232

i

F + 
1000

(24) pe
: (9)

From (9) it is clear that, for a given price of a bitcoin pb; the di¢culty will increase in response

to an increase in the hashrate of minersí equipment ; an improvement in the energy e¢ciency

of the minersí equipment (a decrease in ), a decrease in the price of electricity pe; or an

increase in the Bitcoin block reward ! or fees f . It follows from (8) and (9) that we can
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write XS =



X and hence XS = X if and only if  = :

2.2 Demand

There are i = 1:::N buyers of bitcoins. Their use case is making a remittance or an anony-

mous payment. A representative agent iís utility from bitcoin at a given point in time is

Ui = u (xi; r; A; S)

where u is continuous and quasi-concave, xi is the quantity of bitcoins held by user i, r is

the expected one period return from holding bitcoin, A represents the anonymity associated

with the transfer of bitcoins and S is the security of the Bitcoin network.

For the purpose of undertaking an empirical analysis, the aggregate daily demand for the

bitcoin is speciÖed as a standard constant elasticity of demand function

XD = 0W
1p"b (10)

where 0 and 1 are constants, " is the price elasticity of demand, and W includes the

determinants of the demand for the bitcoin other than its price.

2.3 Equilibrium

I deÖne a comprehensive equilibrium to be a four-tuple (X; pb ; 
;M) ; where the Örst

element is the equilibrium quantity of bitcoins supplied per day, the second element is the

equilibrium price, the third element is the equilibrium level of di¢culty and the fourth

element is the equilibrium number of miners per day, which determines the equilibrium

hash rate. A comprehensive equilibrium is the unique solution to the system of equations

determined by the zero proÖt condition obtained from setting (4) equal to the minersí Öxed
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costs, the Bitcoin protocolís speciÖed waiting time to Önd a block of (5), the supply curve

of (8) and the demand curve of (10). In a comprehensive equilibrium, since XS (p

b ; 

) =

XD (p

b) = X and XS = X if and only if  = ; it follows that X = X: We have seen

that since the level of di¢culty  is adjusted only at intervals, an equilibrium in the market

(XS (p

b ; ) = XD (p


b) = X) may not occur at the same time as an equilibrium in the

protocol ( = ; M =M).

Figure 1 depicts the aggregate daily supply of bitcoins by miners and the aggregate

daily demand for bitcoins by individuals. Starting from an initial comprehensive equilibrium

labeled 1 with price pb1; a level of output X1 = X; a mass of entrants M1, and a level

of di¢culty 1, an increase in demand from XD to X 0
D leads to an increase in the price

of a bitcoin to pb2 and a movement along the supply curve consistent with an increase in

the number of entrants to M2. Because the probability of successfully mining a block is

determined by 1 and more hashpower M2 is directed at the network, the quantity of

bitcoins supplied increases to X2 = XS (pb2; 1) per day in the market equilibrium labeled

2a. The new equilibrium will be short-lived, however, since the mining rate exceeds the

protocolís target mining rate of 144 blocks per day.

It is assumed that equilibrium 2a is representative of the daily mining rate during a

2016-block period. As such, the Bitcoin protocol will choose the new level of di¢culty

2 =  (pb2) : It follows from XS of (8) that the increase in the level of di¢culty from 1 to

2 results in an upward rotation of the supply curve. Referring to Figure 1, the supply curve

rotates upward until XS = X at the price pb2; since pb2 gives rise to the network hashrate

M2: The marginal cost of mining has increased because the greater di¢culty causes miners

to expend more resources on electricity to mine a given number of blocks. Since the price

pb2 is unchanged, it follows from (6) that an increase in di¢culty does not result in an exit

of miners from the industry.13 At the point labeled 2b, the protocol is in equilibrium since

13Recall that the number of miners adjusts immediately to changes in the price of a bitcoin pb and then
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the mining rate is equal to its target given the network hashrate M2; and the network has

no further incentive to change the level of di¢culty. At 2b there is excess demand, however,

which causes the price of a bitcoin to rise to pb3 and the number of miners to increase toM3:

At the market equilibrium labeled 3 with price pb3, the demand X 0
D is equal to the supply of

bitcoins given the new level of di¢culty 2: While the protocol is no longer in equilibrium,

the mining rate is closer to its target than before the increase in di¢culty. More pertinently,

however, since pb3 exceeds pb2; it is clear from Figure 1 that the decrease in supply due to

the greater di¢culty results in an exaggerated price response relative to the price that would

have prevailed had the di¢culty not been adjusted.

Figure 1. Bitcoin price adjustment, where X is the quantity of

bitcoins, pb is the price of the bitcoin and  is the network di¢culty.

Figure 2 depicts successive positive demand shocks and demonstrates that they result

in a rapidly increasing price path that can be mistaken for a bubble despite being based

on marginal costs. The analysis of a negative demand shock is analogous and a series of

the di¢culty adjusts in turn.
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negative demand shocks can be mistaken for a bursting bubble since the equilibrium price

will fall rapidly as the di¢culty decreases. It follows that the interaction of the Bitcoin

protocol with the market can manifest as boom-and-bust cycles in the price of the bitcoin.

Unlike a bubble, however, price is equal to marginal cost all the while.

Figure 2. Successive positive demand shocks, where X is the quantity of

bitcoins, pb is the price of the bitcoin and  is the network di¢culty.

The fundamental value of a bitcoin pfb is deÖned to be the marginal cost of mining the

target supply of bitcoins X: For a given level of di¢culty ; the fundamental value is given

by the inverse supply curve pb (X; ) evaluated at X = X: As shown in Figure 3, if a

demand shock is permanent, the market price will approach the fundamental value that is

consistent with a comprehensive equilibrium since successive adjustments of the di¢culty will

occur until the mining rate is equal to its target in the limiting comprehensive equilibrium.

The protocol automatically maneuvers the market price toward the price consistent with

equilibrium in the protocol, a process that is only temporarily disrupted by shocks to demand.

Referring to Figure 1, it is clear that the fundamental value can be identiÖed by using
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only the information contained in the supply curve XS and the target X = X: The level

of di¢culty can be viewed as a su¢cient statistic for demand, since it is determined by the

protocol according to the equilibrium mining rate detected by the network, which depends

on both the supply and demand for bitcoins.

Figure 3. Limiting bitcoin price adjustment, where X is the quantity of

bitcoins, pb is the price of the bitcoin and  is the network di¢culty.

The following proposition characterizes the fundamental value of the bitcoin and speciÖes

its relation to the price of the bitcoin.

Proposition 1 (i) The fundamental value of the bitcoin pfb is equal to the minersí dollar

costs relative to their expected bitcoin block rewards and fees. (ii) pb = pfb if and only if

 = : (iii) pb =
h
0
X
W 1pfb ()

i 1
1+"

:

Proof. See the Appendix.

Proposition 1(i) follows from the inverse supply curve derived from XS of (8), which
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shows that the marginal cost of producing X bitcoins at a given level of di¢culty  is

pfb ()  pb

X; 


=


F + 

1000
(24) pe


M

(! + f)
h
(24)602M109

232

i : (11)

It follows that the marginal cost of mining the target supply of bitcoins is equal to the minersí

daily cost of mining, denominated in dollars, relative to their daily expected block rewards

and fees, denominated in bitcoins. In other words, the minersí daily expected block rewards

and fees, when valued at pfb ; are equal to their daily mining costs. This is the standard

equilibrium in a rent-seeking tournament that has been widely used to model bitcoin mining

(Budish, 2018) since the prize in the tournament is dissipated by the expenditures aimed

at winning the prize. Part (ii) of the proposition demonstrates that pb = pfb is indicative

of an equilibrium in the Bitcoin protocol since it follows from (9) and (11) that pb = pfb if

and only if  = : Hence, whenever the bitcoin is valued according to pfb ; the protocol has

no incentive to change the level of di¢culty. Lastly, part (iii) of the proposition relates the

price of the bitcoin to its fundamental value, for a given level of the di¢culty. It follows

that the market price of the bitcoin pb and the fundamental value of the bitcoin p
f
b have a

log-linear relationship. Furthermore, whenever the protocol is in equilibrium, since pb = pfb ;

it follows that pb =

0
X
W 1

 1
" : Itís clear that since the di¢culty adjustment mechanism

enforces a vertical supply curve at the target supply of bitcoins X, prices are demand driven

as pb depends entirely on the determinants of demand in W .

To summarize, this section established that the supply of bitcoins is linear and upward

sloping through the origin. An increase (decrease) in the level of di¢culty results in an

upward (downward) rotation of the supply curve. After 2016 blocks have been mined, if the

Bitcoin network detects that the mining rate di§ers from the target of 144 blocks per day,

the protocol will adjust the di¢culty so that the existing network hashrate will result in a

10-minute interval between successive blocks mined. Positive demand shocks can result in
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a rapidly increasing price path that may be mistaken for a bubble despite being supported

by the marginal cost of mining. Proposition 1 characterizes the fundamental value of the

bitcoin and demonstrates that when the price of the bitcoin is equal to its fundamental

value, there is simultaneously equilibrium in the protocol and the rent-seeking tournament

among miners. The protocolís imposition of a target supply of bitcoins also results in price

volatility, since variations in demand are expressed in the price.

3 Data description

This section describes the data and examines how well the theoretical model in Section 2

Öts the data.

The data were acquired from numerous sources. The daily average USD price of the

bitcoin across major bitcoin exchanges, daily data on the Bitcoin di¢culty level, the Bitcoin

block reward and fee, and the number of blocks mined per day were acquired by using

Blocksci, an open-source software platform for blockchain analysis.14 ;15 Daily USD price

data for new (unused) Antminer mining rigs (models S1, S2, S3, S4, S5, S7, S9 and S11)

sold on Amazon Marketplace by third party sellers, which is accessible from Amazon.com,

were acquired by using an API for the Amazon price tracker Keepa.com.16 The reported

price is the lowest of the prices available from the sellers and does not include shipping costs;

missing data correspond to periods of time when all sellers are out of stock. The mining

rig speciÖcations regarding the hash rate and energy e¢ciency were obtained directly from

Amazon.com and are provided in Table 1. Since several Antminer models can be sold in the

Amazon Marketplace at a given point in time, the daily average USD price was constructed

14See Kalodner et al. (2017) and https://github.com/citp/BlockSci.
15Note that Blocksci utilizes an API for coindesk.com to provide the end of day price of a bitcoin.
16The Amazon standard identiÖcation numbers (ASIN) that identify the models are: B00I0F4IMI,

B00KH9339O, B00NZDBWKG, B00NWHT18A, B00RCTIY4G, B014OGCP6W, B01MCZVPFE, and
B07KPF2DJJ.
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by averaging over the prices of all Antminer models that were available for sale on a given

day. Similarly, the daily average hashrate and the daily average energy e¢ciency of the

Antminer rigs were constructed by averaging over the gigahashes per second (GHash/s) and

the joules per gigahash (Joules/GHash) for all Antminer models that were available for sale

on the given day, respectively. Since 17 March 2014 was the Örst day that price information

on the Antminer S1 rig was tracked by Keepa.com, the data cover the period from 17 March

2014 to 13 January 2019. While there are numerous brands of bitcoin mining rigs available

on the market, the Antminer rigs are on the technological frontier in terms of their power

and energy e¢ciency and Bitmainís market share is about 70%80%.17 The average price of

electricity used in mining is conservatively estimated to be 0:05 USD per kWh since Bitmain,

which owns one of the worldís largest bitcoin mines, was known to be paying just 4 cents

per kWh of electricity in Inner Mongolia (de Vries, 2018). Also, the expected lifespan of a

mining rig is estimated to be two years, so that the daily depreciation rate is 1
730
; since large

companies like Bitmain are constantly working on releasing faster and more e¢cient models

that render their predecessors obsolete.

[Insert Table 1 here.]

Figure 4 depicts the bitcoin price path over the sample period in both levels and logs.

While the price had an exponential growth, since the logarithm of the price is approximately

linear, numerous boom-and-bust cycles are evident, with the largest boom occurring in late

2017. On 16 December 2017, bitcoin reached its maximum price of 19,343.04 USD. Figure 5

depicts the daily level of di¢culty over the sample period in both levels and logs. It is clear

that the level of di¢culty had been increasing exponentially until 17 October 2018. After

that time, the di¢culty predominantly decreased (4 of the 6 remaining di¢culty adjustments

17See https://coincentral.com/how-antminer-became-the-best-bitcoin-mining-hardware-in-less-than-two-
years/
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were decreases). The level of di¢culty was adjusted downward only 21 times over the sample

period, which is 15.9% of all di¢culty adjustments. Figure 6 depicts the sum of the Bitcoin

block reward and fees over the sample period. It is clear that the block reward was halved

from 25 bitcoins to 12.5 bitcoins on 9 July 2016 and that fees were much more prevalent

throughout 2017 due to congestion in the Bitcoin blockchain. Figure 7 presents a standard

plot and a boxplot of the daily mining rate, where a horizontal line is drawn at the target of

144 blocks. It is clear that the mining rate frequently di§ered from its target and hence the

protocol was frequently not in equilibrium. The daily mining rate reached a minimum of 80

blocks per day (on 11 and 12 November 2017) and a maximum of 216 blocks per day (on

10 December 2015) during the sample period. The mean and median blocks mined per day

are 151.6 and 151, respectively, indicating that the daily mining rate typically exceeded the

target during the sample period. Figure 8 depicts the Antminer rig speciÖcations over the

sample period. We can see that, on average, Antminer rigs have become more powerful over

time, since their hashrate is increasing. While the energy e¢ciency of the rigs is improving,

as the rate of joules per gigahash is decreasing over time, their greater power was large

enough to result in greater energy use since the number of watts used (joules per second) was

increasing over time. Note that the gaps in the Antminer rig speciÖcation data correspond

to periods of time when none of the sellers in the Amazon Marketplace had any of the

Antminer rigs listed in Table 1 in stock.18 This demonstrates that there was likely excess

demand for mining equipment during this time period, when the price of the bitcoin was

quite high (approximately 5,500 USD) and rising rapidly. Figure 9 depicts the average price

of Antminer rigs over the sample period and their average price per gigahash per second. We

can see that mining equipment costs had generally increased in tandem with the market price

of the bitcoin (the correlation between the bitcoinís price and the average price of Antminer

18These are from 12 October 2017 to 17 October 2017, from 19 October 2017 to 26 October 2017, from 13
November 2017 to 17 November 2017, from 24 November 2017 to 5 December 2017, from 9 December 2017
to 10 December 2017, and from 3 January 2018 to 4 January 2018.
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rigs is .59). The average price of Antminer rigs relative to their average hashrate measured

in gigahashes per second, however, had been steadily decreasing over time and reached a

low of 0.03 USD by the end of the sample period. Figure 10 depicts the minersí daily

average equipment and electricity costs as deÖned in (7) and the proportion of electricity in

their daily costs over time.19 With the exception of late 2017, when mining equipment was

extraordinarily costly due to the plausible excess demand, electricity costs were growing as a

share of the minersí daily costs. Electricity costs approached 80.2% of daily costs by the end

of the sample period due to the increasing energy usage of the mining equipment evident in

Figure 8 and the falling price of mining rigs evident in Figure 9.

Figure 11 assesses whether the Bitcoin network adjusted the di¢culty according to Eq.

(1). The diagram plots the ratio of the new level of di¢culty relative to the previous level

against the mining rate divided by the target mining rate of 144, where the mining rate is the

average number of blocks mined per day during the interval between di¢culty adjustments.

It is clear that the data are consistent with (1) since the points line up on the 45 degree line

and the two variables have a correlation of .99.

[Insert Figures 4 to 11 here.]

Next, the data is used to simulate the fundamental value of the bitcoin pfbt deÖned in (11)

and it is compared with the market price of the bitcoin pbt. Recall that p
f
bt depends only

on supply side parameters, since the di¢culty  can be viewed as a su¢cient statistic for

demand. This fortuitously permits a straightforward estimation of the fundamental value of

the bitcoin without having to directly observe the determinants of demand. The fundamental

value of the bitcoin pfbt is strongly related to the di¢culty as the correlation between p
f
bt and 

is .93. Figure 12 depicts the estimated fundamental value and the actual price of the bitcoin

19Which, from (7), is

1000 (24)pe

F+ 
1000 (24)pe

:
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in both levels and logs. The fundamental value tracks variations in the market price quite

well since the correlation between them is .79. The fundamental value rose sharply in July

2016 when the block reward was halved and it also fell sharply in July 2017 because of the

introduction of the powerful Antminer S9.20 The market price of the bitcoin does not exhibit

such sharp adjustments likely because both of these events could have been anticipated by

participants in the bitcoin market. We can see that the fundamental value was in line with

the market price well up to late 2017, after which the actual price exceeded the fundamental

value by 100% to 185% until early 2018. While there was a large discrepancy between the

market price of the bitcoin and its fundamental value, it likely resulted from barriers to

entry for miners that are not wholly captured by the model.21 As noted above, during this

period there were occasions when none of the sellers in the Amazon Marketplace had an

Antminer rig in their inventory, indicating that state-of-the-art rigs were generally di¢cult

to acquire.22 Since the price of the bitcoin had reached historic levels, mining equipment

was in short supply during this time, resulting in its extraordinarily high price or complete

lack of availability.23

[Insert Figure 12 here.]

In summary, we have seen that the data are largely consistent with the model formulated

in Section 2. While there was a discrepancy between the market price of the bitcoin and its

fundamental value in late 2017, this likely resulted from the minersí inability to enter the

market due to the lack of available equipment. It remains to test whether the deviations in

20We can see from the top panel of Figure 8 that the Antminer S9 became the dominant Antminer rig in
the market in July 2017 since the average hashpower of the Antminer rigs approaches 14,000 GHash/s.
21While the increase in the price of the bitcoin during this time may have been due to market manipulation

(Gri¢n and Shams, 2020), it would have had no bearing on minersí incentives to enter the market in response
to the high prices.
22See Footnote 18.
23See: https://www.newsbtc.com/tech/popularity-of-mining-has-created-a-worldwide-shortage-of-gpus/

which describes how the cryptocurrency bull run of 2017 created a demand for mining rigs that resulted in
a worldwide shortage of computer components.
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the price of the bitcoin from its fundamental value can be attributed to bubbles.

4 Econometric model

4.1 Testing for cointegration

This section investigates whether the empirical evidence supports Eq. (11) as the fundamen-

tal value of the bitcoin. Prior to determining the stability of their underlying relationship,

the time series properties of the price of the bitcoin and the marginal cost of mining the

target supply of bitcoins X are examined. Two variables are said to be cointegrated if they

share a common long run stochastic trend; the presence of cointegration can be interpreted

as the existence of a long-run equilibrium relationship between the variables in question (En-

gle and Granger, 1987). Since the protocol sets the di¢culty at regular intervals of time to

maintain equilibrium in the protocol, it follows from Proposition 1(ii) that the price of the

bitcoin should not persistently deviate from the marginal cost of mining the target supply

of bitcoins X. While cointegration of these time series is su¢cient to support the marginal

cost of mining the target supply of bitcoins X as the fundamental value of the bitcoin, it

is not a necessary condition since the price could deviate from its fundamental value due

to the presence of bubbles in the price of the bitcoin. Indeed, Diba and Grossman (1988)

proposed the use of standard unit root and cointegration tests for stock prices and observable

fundamentals to obtain evidence for the existence of explosive rational bubbles.24

For a given time t, from Proposition 1(ii) it follows that the equilibrium relationship

between the price of the bitcoin pb and its fundamental value p
f
bt can be expressed as

pbt = 0 + 1p
f
bt + t (12)

24Since bubbles generate an explosive component into the asset priceís time series, they argued, the
existence of bubbles would result in stock prices and dividends that are not cointegrated.
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where the error term t is due to demand shocks in the interim between di¢culty adjust-

ments. The di§erences (or error term) in the cointegration equation (12) are interpreted as

the unbalance error for each particular point in time. Testing for cointegration determines

whether the distance between pbt and p
f
bt is stable and evidence of their cointegration would

reáect the presence of a long-run equilibrium towards which the economic system converges

over time.

The Augmented Dickey Fuller (ADF) test (Dickey and Fuller, 1979) is used to Örst

determine whether pbt and p
f
bt are nonstationary time series. It tests the null hypothesis

that a unit root is present in a time series sample against the alternative hypothesis of

stationarity. SpeciÖcally, for a time series yt that has length T; the ADF test is undertaken

by using ordinary least squares (OLS) to estimate the following autoregressive speciÖcation

yt =  + yt1 +
kX

i=1

 iyti + t; t  NID

0; 2



for a given lag order k, where NID denotes independent and normally distributed. The unit

root test is left-tailed and carried out under the null hypothesis  = 0 against the alternative

 < 0: Once a value for the test statistic ADF =
b

SE(b)
is computed, it is compared to its

corresponding critical value; if the calculated test statistic is smaller, then the null hypothesis

is rejected and the evidence supports that no unit root is present.

If the ADF test indicates that pbt and pfbt are individually nonstationary, the Engle-

Granger test can then be used to test for their cointegration. The test is based on the

intuition that if two variables are cointegrated, then the residuals of their cointegrating

regression will be stationary. First, OLS is used to estimate (12) and the residuals bt = pbt

b0  b1pfbt are computed. Next, the ADF test is used to test for the stationary of t and

the test statistic is compared to its corresponding critical values. For the relevant case

with more than 500 observations and no trend in the cointegrating regression, the critical
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values are 3:434, 2:862 and 2:567 for 1%, 5% and 10% levels of signiÖcance, respectively

(MacKinnon, 1990).

4.2 Testing for multiple bubbles

This section applies the bubble detection methodology developed in Phillips et al. (2011)

and Phillips et al. (2015a; 2015b) to determine whether the deviations in the market price

of the bitcoin from the marginal cost of mining the target supply of bitcoins X demonstrate

explosive behavior.25 These methods can detect rational bubbles as well as other bubble-

generating mechanisms such as intrinsic bubbles, herd behavior and time-varying discount

factor fundamentals.26 Phillips et al. (2015a; 2015b) extend Phillips et al. (2011), which

develops a supremum augmented DickeyñFuller (SADF) test for the presence of a bubble

based on a sequence of forward recursive right-tailed ADF unit root tests, and a dating

strategy that identiÖes points of origin and termination of a bubble based on a backward re-

gression technique. The generalized supremum ADF (GSADF) method developed in Phillips

et al. (2015a; 2015b) also relies on recursive right-tailed ADF tests but uses áexible window

widths in its implementation. Instead of Öxing the starting point of the recursion at the Örst

observation, the GSADF test extends the sample coverage by changing both the starting

point and the endpoint of the recursion over a feasible range of áexible windows. This en-

hanced approach is designed to outperform previous bubble detection methods in detecting

explosive behavior whenever multiple bubble episodes occur in the data since it covers more

subsamples of the data. It also delivers a consistent dating mechanism whenever multiple

bubbles occur.

SpeciÖcally, for a time series yt that has length T; the SADF and GSADF tests are

25Note that in order to carry out the tests, gaps in the Antminer rig speciÖcation and price data during
late 2017 were Ölled by replacing each missing value with the most recent present value prior to it.
26See Phillips et al. (2015a), Footnote 5.
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undertaken by using OLS to estimate the following autoregressive speciÖcation

yt = r1;r2 + r1;r2yt1 +

kX

i=1

 ir1;r2yti + "t; "t  NID

0; 2r1;r2


(13)

where Eq. (13) is estimated repeatedly using subsets of the sample data. The null hypothesis

is that the data contains a unit root  = 1 and the alternative hypothesis postulates the

presence of a mildly explosive autoregressive coe¢cient  > 1. If we renormalize the indices

of the time series to lie within the interval [0; 1], then the total sample can be indexed by

values of r that range from 0 to 1. If r1 and r2 are the starting and ending points of a

regression sample, the ADF statistic calculated from the sample is the t-statistic for the

estimate of r1;r2 and is denoted by ADF
r2
r1
. The SADF statistic is deÖned as the supremum

of the ADF statistics over the range of r2

SADF (r0) = sup
r2[r0;1]

ADF r20

where r0 is the minimum window size. A bubble occurs if the SADF statistic exceeds its

critical value, which is derived from the distribution of the SADF statistic by Monte Carlo

Methods.

In contrast with the SADF test, the GSADF test varies the endpoint r2 from the minimum

window size r0 to 1; and the starting point r1 also varies from 0 to r2 r0: The GSADF

statistic is deÖned as the supremum of the ADF statistics in a double recursion over all

feasible ranges of r1 and r2

GSADF (r0) = sup
r2[r0;1]

r1[0;r2r0]

ADF r2r1 :

A bubble occurs if the GSADF statistic exceeds its critical value, which is also derived by
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Monte Carlo Methods. The recommended minimum window size for both the SADF and

GSADF tests is r0 = :01 + 1:8
p
T ; which delivers satisfactory size and power performance

(Phillips et al., 2015b).

Date stamping bubble episodes under the new approach of Phillips et al. (2015a; 2015b)

involves constructing a supremum ADF test on a backward expanding sample sequence

where the endpoint of each sample is Öxed at r2 and the start point r1 varies from 0 to

r2  r0: The estimated origination date of a bubble is deÖned as the Örst observation whose

backward supremum ADF (BSADF) statistic exceeds its corresponding critical value, which

is based on r2T observations. The estimated termination date of a bubble is the subsequent

observation that exceeds a speciÖed period of time whose BSADF statistic falls below its

corresponding critical value. For a bubble to be deÖned, it is assumed that its duration must

exceed one week.27 The date-stamping strategy may be used as an ex ante real-time dating

procedure, whereas the GSADF test is an ex post statistic used for analyzing a given data

set for bubble behavior. This approach improves upon the original version of the dating

strategy in Phillips et al. (2011), based on a sample sequence of backward ADF (BADF)

statistics, where the start point in the real-time analysis is unchanged. It has been shown

that the new approach (Phillips et al., 2015a; 2015b) yields a consistent dating mechanism

whenever multiple bubbles occur.

The bubble detection methodology of Phillips et al. (2011) and Phillips et al. (2015a;

2015b) is applied to test for explosive departures in the price of the bitcoin from its model-

implied fundamental value. From Proposition 1(iii), it follows that the relation between the

market price of the bitcoin pb and the fundamental value p
f
b is log-linear and is given by

log pbt = 0 + 1 log p
f
bt + t (14)

27This is conservative as Phillips et al. (2015a) suggest that one may wish to impose a period of time
equal to one year.
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for daily observations indexed by t. First, OLS is used to estimate (14) and the residuals

bt = log pbtc0c1 log pfbt are computed. Since all departures of the price from the marginal

cost of mining the target supply of bitcoins X must be evident in the residuals bt, the SADF

and GSADF tests are used to determine whether there is evidence of explosive behavior in

them. Both tests are applied for the sake of completeness. While this approach is consistent

with the model of Section 2, as a robustness check, the SADF and GSADF tests are also

applied to the di§erence log pbt  log pfbt; which does not rely on performing OLS.

5 Results

5.1 Testing for cointegration

The ADF test indicates that both the price of the bitcoin pbt and the fundamental value p
f
bt

are nonstationary time series. The ADF test on the price of the bitcoin pbt resulted in a

test statistic of 2:51 and a p-value of :36, and the ADF test on the fundamental value pfbt

resulted in a test statistic of 1:90 and a p-value of :62, indicating that we cannot reject the

null hypothesis of a unit root for both of the time series.28

Since the price of the bitcoin pbt and the fundamental value p
f
bt are individually nonsta-

tionary, the Engle-Granger cointegration test was applied to pbt and p
f
bt.
29 It resulted in a test

statistic of 2:74 and a p-value of :071, indicating that we can reject the null hypothesis of

no cointegration at the 10% level of signiÖcance. There is su¢cient evidence to demonstrate

that the price of the bitcoin shares a long-run equilibrium relationship with marginal cost

of mining the target supply of bitcoins, supporting the model set out in Section 2, and its

identiÖcation of the marginal cost of mining the target supply of bitcoins as the fundamental

28The lag length k was chosen by the rule of thumb trunc(T  1)
1
3 (Said and Dickey, 1984).

29Note that the same lag length as for the ADF tests on pbt and p
f
bt was used (see Footnote 28).
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value of the bitcoin. All results are summarized in Table 2.

[Insert Table 2 here.]

5.2 Testing for multiple bubbles

Since the empirical evidence supports pfbt as the fundamental value of the bitcoin, the sum-

mary SADF and GSADF tests were applied to the OLS residuals bt and the di§erence

log pbt  log pfbt, in addition to the raw bitcoin price log pbt. Table 3 presents the test statis-

tics and the Önite sample critical values obtained from Monte Carlo simulations with 2,000

replications of 1764 observations. In performing the ADF regressions and calculating the

critical values, the smallest window contained 93 observations of the sample based on the

recommended minimum window size r0 = :01 + 1:8=
p
1764:

For the price data, the SADF and GSADF statistics are 3:7 and 3:9, respectively, which

both exceed their 1% right-tailed critical values (3:7 > 2:2 and 3:9 > 2:9). This provides

strong evidence of explosive subperiods in the bitcoin price data. The top panel of Figure

13 depicts the sequence of BADF statistics and the corresponding 95% and 99% critical

values obtained from Monte Carlo simulations with 2,000 replications for each observation

of interest, for the price series. The top panel of Figure 14 depicts the analogous information

for the BSADF sequence. From Figure 13 it is clear that there is one identiÖed period of

explosive behavior for the price, when the recursive ADF statistic exceeds the 95% critical

value sequence, that is greater than one week long (2017-05-01 to 2018-11-15). From Figure

14, there are seven identiÖed periods of explosive behavior for the price time series, when the

recursive SADF statistic exceeds the 95% critical value sequence, that are greater than one

week long (2014-09-28 to 2014-10-08; 2015-01-13 to 2015-01-20; 2015-11-02 to 2015-11-09;

2016-05-28 to 2016-06-21; 2016-12-22 to 2017-01-05; 2017-03-01 to 2018-05-22; and 2018-11-
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19 to 2018-12-16). It is clear from comparing Figures 13 and 14 that the recursive SADF

test statistic is more sensitive since, at the 5% level of signiÖcance, it identiÖes periods of

explosive behavior that are not detected by the recursive ADF test statistic.

Next, the summary SADF and GSADF tests are applied to the residuals bt: The SADF

and GSADF statistics are :08 and 1:52, respectively, which fall well below their 10% right-

tailed critical values (:08 < 1:3) and (1:5 < 2:2). The middle panels of Figures 13 and

14 depict the backward ADF sequence and the backward SADF sequence, respectively, for

the residuals bt. Both demonstrate that there is no evidence of an explosive departure in

the price of the bitcoin from the marginal cost of mining the target supply of bitcoins X.

Since the raw price data indicates the presence of bubbles while the residuals bt do not, from

(14) it follows that we can attribute the apparent bubbles in the price of the bitcoin to the

fundamental value pfbt: Evidence of nonstationarity in the price alone does not establish the

existence of bubbles since it can be attributed to the nonstationarity of a variable in market

fundamentals. Because pfbt is highly correlated with the di¢culty, the empirical evidence

supports that the apparent bubbles in the price of the bitcoin arise from a supply side

phenomenon that can be attributed to Bitcoinís di¢culty adjustment mechanism.

Finally, as a robustness check, the summary SADF and GSADF tests are applied to the

di§erence log pbt  log pfbt. The SADF and GSADF statistics are :15 and :97, respectively,

which fall even further below their 10% right-tailed critical values (:15 < 1:3) and (:97 <

2:2). The bottom panels of Figures 13 and 14 depict the backward ADF sequence and

the backward SADF sequence, respectively, for the di§erence log pbt  log pfbt. Both tests

conÖrm that there is no evidence of an explosive departure in the price of the bitcoin from

its model-implied fundamental value.

[Insert Table 3 here.]
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[Insert Figures 13 and 14 here.]

6 Conclusion

This paper develops a theoretical model of the bitcoin market that incorporates the produc-

tion of bitcoins by miners and the functioning of the Bitcoin protocol. The model clearly

demonstrates that because the bitcoin protocol targets a given quantity of bitcoins supplied

per day, variations in demand are expressed in the price of the bitcoin, resulting in supernor-

mal price volatility. Also, whenever the mining rate exceeds the target, since the protocol

responds by increasing the di¢culty, it e§ectively works against the marketís self-correcting

mechanism by decreasing supply in the presence of excess demand. (Analogously, whenever

the mining rate falls short of the target, the protocol responds by decreasing the di¢culty,

which increases supply in the presence of excess supply.) It follows that the intervention of

the protocol in the market can result in excess volatility and boom and bust phases that

resemble bubble conditions despite that prices reáect fundamental bitcoin value.

A key implication of the model is that the fundamental value of the bitcoin is the marginal

cost of mining the target supply of bitcoins. Since the bitcoin is not an income generating

asset, it should be valued according to equilibrium market conditions. The framework reveals

that when the price of the bitcoin is equal to the marginal cost of mining the target supply of

bitcoins, there is equilibrium in the protocol and the rent seeking tournament among bitcoin

miners. Also, following a permanent demand shock, the protocolís successive adjustments in

the di¢culty will cause the market price to approach the fundamental value consistent with

the limiting equilibrium.

Nearly 5 years of market data demonstrate that the price of the bitcoin and the marginal

cost of mining the target supply of bitcoins are cointegrated time series, which empirically

supports the marginal cost of mining the target supply of bitcoins as the fundamental value
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of the bitcoin. Current bubble detection techniques demonstrate that while the price of

the bitcoin exhibits explosive subperiods, there is no evidence of an explosive departure in

the price of the bitcoin from the model-implied fundamental value. Because the residuals

from regressing the price of the bitcoin on the marginal cost of mining the target supply

of bitcoins do not indicate explosive behavior, it follows that we can attribute the apparent

bubbles in the price of the bitcoin to the market fundamentals themselves. Furthermore,

since they are highly correlated with the di¢culty, the empirical evidence supports that

the apparent bubbles in the price of the bitcoin can be attributed to Bitcoinís di¢culty

adjustment mechanism. The bitcoin price path should not be de facto considered bubbly

but rather as having price dynamics that arise from the Bitcoin protocolís interference in

the market.

While the evidence in this paper shows that the price of the bitcoin and the marginal

cost of mining the target supply of bitcoins are cointegrated, further econometric work could

analyze the dynamic process of convergence in terms of its degree and timing. This paper

has established the important role of a cryptocurrencyís protocol in its price determination.

While the framework in this paper could be applied to any PoW cryptocurrency, it remains

to be understood how other consensus mechanisms ináuence the price dynamics of the cryp-

tocurrencies that use them. Furthermore, within and across types of consensus mechanisms,

little is known about how the speciÖc parameter choices encoded in the protocols ináuence

the cryptocurrenciesí exchange rates. I leave these important questions for future research.
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Appendix

Proof of Proposition 1:
(i) From the supply curve XS of (8), it follows that the marginal cost of producing X

bitcoins at a given level of di¢culty  is

pfb  pb

X; 
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where pb (X; ) is the inverse supply curve. (ii) From (9) it follows that
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and hence  =  if and only if pb =
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i = pfb : (iii) Follows directly from

solving (8) and (10) for pb:



	 	

	
 Tracking 

Since 

First 

Available 

GHash/s Joules/GHash Watts 

Antminer S1 14-03-17 13-12-30 180 2 360 

Antminer S2 14-06-10 14-05-21 1,000 1 1,000 

Antminer S3 14-12-31 14-09-27 441 .83 366 

Antminer S4 14-11-18 14-09-25 2,000 .725 1,450 

Antminer S5 14-12-28 14-12-22 1,155 .51 590 

Antminer S7 15-09-06 15-08-30 4,860 .25 1,210 

Antminer S9 16-11-02 18-01-16 14,000 .098 1,372 

Antminer S11 18-11-21 18-11-19 20,500 .064 1,312 

	
Table 1. Antminer bitcoin mining machine model specifications for hash rate, efficiency, 

and power consumption. 

	
	
 Test Statistic P-Value 

ADF Test on Price –2.51 .36 

ADF Test on FV –1.90 .62 

Engle-Granger Cointegration Test –2.74 .071 

	
Table 2. The ADF and Engle-Granger cointegration test statistics and corresponding p-

values for the price and model-implied fundamental value. 

	
	
  Test Statistic Critical Values 

   90% 95% 99% 

Log Price SADF 3.725 1.3064 1.5806 2.1779 

 GSADF 3.8879 2.2066 2.3842 2.8776 

Residuals SADF –.077541 1.3064 1.5806 2.1779 

 GSADF 1.5273 2.2066 2.3842 2.8776 

Log Price – Log FV SADF –.15092 1.3064 1.5806 2.1779 

 GSADF .96727 2.2066 2.3842 2.8776 

	
Table 3. The SADF and GSADF test statistics and their respective critical values for the 

log price, residuals from regressing the log price on the log model-implied fundamental 

value, and the difference between the log price and the log model-implied fundamental 

value. 

	 	



	 	

	
	
	
	

		 Figure 4. The bitcoin price in levels Figure 5. The Bitcoin network difficulty  

 and logs.   in levels and logs.  

	

		 Figure 6. The bitcoin block rewards  Figure 7. The daily mining rate (blocks  

 and fees. mined per day). 	 	
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 Figure 8. Average Antminer Figure 9. Average Antminer price 

 hash rate, efficiency, and power and average Antminer price per  

 consumption. gigahash. 

	

	
 Figure 10. Average equipment and  Figure 11. Difficulty adjustments 

 electricity costs for miners and  according to the Bitcoin protocol.  

 electricity costs as a share of the  

 total costs.  
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 Figure 12. Simulated model- Figure 13. BADF sequences for the log  

 implied fundamental value and price, residuals from regressing the log  

 the price of the bitcoin. price on the log model-implied  

   fundamental value, and the difference 

   between the log price and the log  

   model-implied fundamental value. 

 

 

   

	
 Figure 14. BSADF sequences for the log 

 price, residuals from regressing the log 

 price on the log model-implied 

 fundamental value, and the difference 

 between the log price and the log	
	 model-implied fundamental value.	
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